你将学到什么
Ultracold bosons and fermions
Bose-Einstein condensation
Weakly interacting Bose gases
Superfluid to Mott insulator transition
BEC-BCS crossover
Trapped ions
Quantum gates with ions
课程概况
In this physics course you will learn about ultracold bosons and fermions, and you will hear from Prof. Ketterle about Bose-Einstein condensation (BEC). Prof. Ketterle was among the first to achive BEC in the lab and was awarded the Nobel prize in 2001 for his work along with Eric Cornell and Carl Wieman. You will also learn about weakly interacting Bose gases, as well as superfluid to Mott insulator transition, BEC-BCS crossover, trapped ions and quantum gates with ions.
This course is a part of a series of courses to introduce concepts and current frontiers of atomic physics, and to prepare you for cutting-edge research:
8.422.1x: Quantum states and dynamics of photons
8.422.2x: Atom-photon interactions
8.422.3x: Optical Bloch equations and open system dynamics
8.422.4x: Light forces and laser cooling
8.422.5x: Ultracold atoms and ions for many-body physics and quantum information science
At MIT, the content of the five courses makes the second of a two-semester sequence (8.421 and 8.422) for graduate students interested in Atomic, Molecular, and Optical Physics. This sequence is required for Ph.D. students doing research in this field.
Completing the series allows you to pursue advanced study and research in cold atoms, as well as specialized topics in condensed matter physics. In these five courses you will learn about the following topics:
quantum states and dynamics of photons
photon-atom interactions: basics and semiclassical approximations
open system dynamics
optical Bloch equations
applications and limits of the optical Bloch equations
dressed atoms
light force
laser cooling
cold atoms
evaporative cooling
Bose-Einstein condensation
quantum algorithms and protocols
ion traps and magnetic traps.
预备知识
A two-semester sequence in Quantum Mechanics at the level of MIT 8.05 and 8.06.