Warning: WP Redis: Connection refused in /www/wwwroot/cmooc.com/wp-content/plugins/powered-cache/includes/dropins/redis-object-cache.php on line 1433
大数据与教育 | MOOC中国 - 慕课改变你,你改变世界

大数据与教育

Big Data and Education

Learn the methods and strategies for using large-scale educational data to improve education and make discoveries about learning.

1389 次查看
宾夕法尼亚大学
edX
  • 完成时间大约为 8
  • 高级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Key methods for educational data mining

How to apply methods using Python's built-in machine learning library, scikit-learn

How to apply methods using standard tools such as RapidMiner

How to use methods to answer practical educational questions

课程概况

Online and software-based learning tools have been used increasingly in education. This movement has resulted in an explosion of data, which can now be used to improve educational effectiveness and support basic research on learning.

In this course, you will learn how and when to use key methods for educational data mining and learning analytics on this data. You will examine the methods being developed by researchers in the educational data mining, learning analytics, learning-at-scale, student modeling, and artificial intelligence communities. You’ll also gain experience with standard data mining methods frequently applied to educational data. You will learn how to apply these methods and when to apply them, as well as their strengths and weaknesses for different applications.

The course will discuss how to use each method to answer education research questions, and to drive intervention and improvement in educational software and systems. Methods will be covered at a theoretical level, and in terms of learning how to apply them in Python or using software tools like RapidMiner. We will also discuss validity and generalizability; establishing how trustworthy and applicable the analysis results.

课程大纲

Week 1: Prediction Modeling
Regressors
Classifiers

Week 2: Model Goodness and Validation
Detector Confidence
Diagnostic Metrics
* Cross-Validation and Over-Fitting

Week 3: Behavior Detection and Feature Engineering
Ground Truth for Behavior Detection
Data Synchronization and Grain Size
Feature Engineering
Knowledge Engineering

Week 4: Knowledge Inference
Knowledge Inference
Bayesian Knowledge Tracing (BKT)
Performance Factor Analysis
Item Response Theory

Week 5: Relationship Mining
Correlation Mining
Causal Mining
Association Rule Mining
Sequential Pattern Mining
* Network Analysis

Week 6: Visualization
Learning Curves
Moment by Moment Learning Graphs
Scatter Plots
State Space Diagrams
* Other Awesome EDM Visualizations

Week 7: Structure Discovery
Clustering
Validation and Selection
Factor Analysis
Knowledge Inference Structures

Week 8: Discovery with Models
Discovery with Models
Text Mining
* Hidden Markov Models

预备知识

Basic knowledge of statistics, data mining, mathematical modeling, or algorithms is recommended. Experience with programming is not required.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界