你将学到什么
How to evaluate, select and apply data science techniques, principles and theory;
How to plan and execute a project;
Work autonomously using your own initiative;
Identify social and ethical concerns around your project;
Develop communication skills using online collaborative technologies.
课程概况
The Big Data Capstone Project will allow you to apply the techniques and theory you have gained from the four courses in this Big Data MicroMasters program to a medium-scale data science project.
Working with organisations and stakeholders of your choice on a real-world dataset, you will further develop your data science skills and knowledge.
This project will give you the opportunity to deepen your learning by giving you valuable experience in evaluating, selecting and applying relevant data science techniques, principles and theory to a data science problem.
This project will see you plan and execute a reasonably substantial project and demonstrate autonomy, initiative and accountability.
You’ll deepen your learning of social and ethical concerns in relation to data science, including an analysis of ethical concerns and ethical frameworks in relation to data selection and data management.
By communicating the knowledge, skills and ideas you have gained to other learners through online collaborative technologies, you will learn valuable communication skills, important for any career. You’ll also deliver a written presentation of your project design, plan, methodologies, and outcomes.
课程大纲
Dataset overview, data selection and ethicsUnderstand ethical issues and concerns around big data projects; Describe how ethical issues apply to the sample dataset; Describe up to three ethical approaches; Apply ethical analysis to scenarios.Exam (timed, proctored)The exam will cover content from the first four courses in the Big Data MicroMasters program, including the Ethics section of this capstone course, DataCapX. It will include questions on topics such as code structure and testing, variable types, graphs, big data algorithms, regression and ethics. Project Task 1: Data cleaning and RegressionUnderstand the basic data cleaning and preprocessing steps required in the analysis of a real data set; Create computer code to read data and perform data cleaning and preprocessing; Judge the appropriateness of a fitted regression model to the data; Determine whether simplification of a regression model is appropriate; Apply a fitted regression model to obtain predictions for new observations.Project Task 2: ClassificationBuild classifiers to predict the output of a desired factor; Analyse learned classifiers; Design a feature selection scheme; Design a scheme for evaluating the performance of classifiers.
预备知识
Candidates interested in pursuing this program are advised to complete Programming for Data Science, Computational Thinking and Big Data, Big Data Fundamentals & Big Data Analytics before this course.
常见问题
Question: This course is self-paced, but is there a course end date?
Answer: Yes. The first course release started on December 1, 2017 and ends on April 1, 2019.
The new release of the course starts on March 1, 2019 and ends on December 1, 2020.