你将学到什么
Data analysis and inference
Data science research design
Experimental data analysis and modeling
课程概况
Data scientists are often trained in the analysis of data. However, the goal of data science is to produce a good understanding of some problem or idea and build useful models on this understanding. Because of the principle of “garbage in, garbage out,” it is vital thata data scientist know how to evaluate the quality of information that comes into a data analysis. This is especially the case when data are collected specifically for some analysis (e.g., a survey).
In this course, you will learn the fundamentals of the research process–from developing a good question to designing good data collection strategies to putting results in context. Althougha data scientist may often play a key part in data analysis, the entire research process must work cohesively for valid insights to be gleaned.
Developed as a powerful and flexible language used in everything from Data Science to cutting-edge and scalable Artificial Intelligence solutions, Python has become an essential tool for doing Data Science and Machine Learning. With this edition of Data Science Research Methods, all of the labs are done with Python, while the videos are language-agnostic. If you prefer your Data Science to be done with R, please see Data Science Research Methods: R Edition.
edX offers financial assistance for learners who want to earn Verified Certificates but who may not be able to pay the fee. To apply for financial assistance, enroll in the course, then follow this link to complete an application for assistance.
课程大纲
The Research Process
Planning for Analysis
Research Claims
Measurement
Correlational and Experimental Design
Note: This syllabus is preliminary and subject to change.
预备知识
To complete this course successfully, you should have:
A basic knowledge of math
Some programming experience - Python is preferred.
A willingness to learn through self-paced study.
常见问题
Q: The prerequisites include Python Programming?
A: Python is used extensively in the machine learning and artificial intelligence fields. The practical elements of this course involve writing code in Python. For the most part, you'll be given the code you need to complete the exercises; but a basic knowledge of Python syntax will improve your understanding of what's going on in the labs and demonstrations. Consider taking course DAT208x: Introduction to Python for Data Science before taking this class.
Q: What hardware and software do I need to complete this class?
A: You will need a computer running Windows, Mac OSX, or Linux and a web browser. Optionally, you can install Python 3.x - but you will be able to complete the labs using a free online environment, so this is not required.
Q: Will I need a Microsoft Azure subscription to complete this class?
A: No. You will be able to complete the labs using a local Python installation or the Microsoft Azure Notebooks service, which is a free service that does not require an Azure subscription.