基因组数据科学导论

Introduction to Genomic Data Science

Join us on the frontier of bioinformatics and learn how to look for hidden messages in DNA without ever needing to put on a lab coat.

1281 次查看
加州大学圣地亚哥分校
edX
  • 完成时间大约为 6
  • 初级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Write Python programs to solve various tasks you may encounter

Formulate a formal computational problem from an informal biological problem

Develop algorithms for solving computational problems

Evaluate the effectiveness of algorithms

Apply existing software to actual biological datasets

课程概况

In the first half of this course, we’ll investigate DNA replication, and ask the question, where in the genome does DNA replication begin? You will learn how to answer this question for many bacteria using straightforward algorithms to look for hidden messages in the genome.
In the second half of the course, we’ll examine a different biological question, and ask which DNA patterns play the role of molecular clocks. The cells in your body manage to maintain a circadian rhythm, but how is this achieved on the level of DNA? Once again, we will see that by knowing which hidden messages to look for, we can start to understand the amazingly complex language of DNA. Perhaps surprisingly, we will apply randomized algorithms to solve problems.
Finally, you will get your hands dirty and apply existing software tools to find recurring biological motifs within genes that are responsible for helping Mycobacterium tuberculosis go “dormant” within a host for many years before causing an active infection.
This course begins a series of classes illustrating the power of computing in modern biology.

课程大纲

Welcome! A brief introduction to the course and its logistics.

Week 1: A Journey of a Thousand Miles
What does a cryptic message leading to buried treasure have to do with biology? Many cellular processes are encoded as "secret messages" within an organism's DNA. But how do we decipher these messages?

Week 2: Finding Replication Origins.
We examine the details of DNA replication and apply these details to design an intelligent algorithmic approach to find the replication origin in a bacterial genome.

Week 3: Hunting for Regulatory Motifs.
Your cells "tell time" and maintain your circadian clock by turning genes on and off during the day in set patterns. This brings us to a different kind of "secret message" problem in biology: how do we find the motifs hidden in DNA that switch on genes? We develop introductory algorithms for motif-finding in genes.

Week 4: How Rolling Dice Helps Us Find Regulatory Motifs.
We see how to improve upon these motif-finding approaches by designing randomized algorithms that can "roll dice" to find motifs and perform quite well in practice.

Week 5: Finishing Up
Bioinformatics Application Challenge: Motif-Finding. We use popular software built on the motif-finding algorithms that we learned to hunt for motifs in a real biological dataset.

End-of-the-Course Assessment.
In an end-of-the course assessment, we will ask you to answer Course Review questions. This will give you the opportunity to let us know how the course went for you. This assessment will provide data for our research study and will help us improve our courses for future learners.

预备知识

None

常见问题

http://bioinformaticsalgorithms.com/faqs.htm

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界