你将学到什么
The dynamics of robot arms, mobile robots and quadrotors
Position and force control for robots
How to generate complex trajectories
The basics of configuration spaces for robotic systems
Controller synthesis and stability
课程概况
Flying drones or robot manipulators accomplish heavy-duty tasks that deal with considerable forces and torques not covered by a purely robot kinematics framework. Learn how to formulate dynamics problems and design appropriate control laws.
In this course, part of the Robotics MicroMasters program, you will learn how to develop dynamic models of robot manipulators, mobile robots, and drones (quadrotors), and how to design intelligent controls for robotic systems that can grasp and manipulate objects.
We will cover robot dynamics, trajectory generation, motion planning, and nonlinear control, and develop real-time planning and control software modules for robotic systems. This course will give you the basic theoretical tools and enable you to design control algorithms.
Using MATLAB, you will apply what you have learned through a series of projects involving real-world robotic systems.
课程大纲
Week 1: Introduction and Course Overview
Week 2: Rigid Body Dynamics
Week 3: Dynamics of Robot Arms
Week 4: Project #1: Modeling of a Robot Arm
Week 5: Introduction to Linear Control
Week 6: State Space Modeling and Multivariable Systems
Week 7: Nonlinear Control
Week 8: Stability Theory
Week 9: Project #2: Control and Trajectory Following for a Mobile Robot
Week 10: Quadrotor Control
Week 11: Trajectory Generation
Week 12: Project #3: Planning and Control of a Quadrotor
预备知识
Good working knowledge of the following undergraduate subjects is required:
Linear algebra
Rigid body dynamics
Multivariable calculus
Ordinary differential equations
The knowledge of basic computer science data structures such as graphs, link lists, etc. is preferred, but students may also choose to learn these skills on their own. The class projects will also require knowledge of MATLAB and programming in C or C++.
Robo1x