机器人技术:视觉智能和机器学习

Robotics: Vision Intelligence and Machine Learning

Learn how to design robot vision systems that avoid collisions, safely work with humans and understand their environment.

815 次查看
宾夕法尼亚大学
edX
  • 完成时间大约为 12
  • 高级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

The fundamentals of image filtering and tracking, and how to apply those principles to face detection, mosaicking and stabilization

How to use geometric transformations to determine 3D poses from 2D images for augmented reality tasks and visual odometry for robot localization

How to recognize objects and the basics of visual learning and neural networks for the purpose of classification

课程概况

How do robots “see”, respond to and learn from their interactions with the world around them? This is the fascinating field of visual intelligence and machine learning. Visual intelligence allows a robot to “sense” and “recognize” the surrounding environment. It also enables a robot to “learn” from the memory of past experiences by extracting patterns in visual signals.

You will understand how Machine Learning extracts statistically meaningful patterns in data that support classification, regression and clustering. Then by studying Computer Vision and Machine Learning together you will be able to build recognition algorithms that can learn from data and adapt to new environments.

By the end of this course, part of the Robotics MicroMasters program, you will be able to program vision capabilities for a robot such as robot localization as well as object recognition using machine learning.

Projects in this course will utilize MATLAB and OpenCV and will include real examples of video stabilization, recognition of 3D objects, coding a classifier for objects, building a perceptron, and designing a convolutional neural network (CNN) using one of the standard CNN frameworks.

课程大纲

Week 1: Camera Geometry and Color Sensing
Week 2: Fourier Transforms, Image Convolution, Edge Detection
Week 3: Image Convolution and Edge Detection Part 2, Image Pyramids
Week 4: Feature Detection: Filters, SIFT, HOG
Week 5: Geometrical Transformation, Affine, Protective and Ransac
Week 6: Optical Flow Estimation
Week 7: Image Morphing
Week 8: Image Blending
Week 9: Image Carving
Week 10: Probability and Statistics, Regression and Classification
Week 11: SVM and Object Recognition
Week 12: Convolutional Neural Network

预备知识

College-level introductory linear algebra (vector spaces, linear systems, matrix decomposition)
College-level introductory calculus (partial derivatives, function gradients)
Basic knowledge of computer programming (variables, functions, control flow) is preferred, but students may also choose to learn it on their own. The class projects will be carried out MATLAB/Python, with C++ as an option.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界