Warning: WP Redis: Connection refused in /www/wwwroot/cmooc.com/wp-content/plugins/powered-cache/includes/dropins/redis-object-cache.php on line 1433
统计预测建模及其应用 | MOOC中国 - 慕课改变你,你改变世界

统计预测建模及其应用

Statistical Predictive Modelling and Applications

Learn how to apply statistical modelling techniques to real-world business scenarios using Python.

1151 次查看
爱丁堡大学
edX
  • 完成时间大约为 6
  • 高级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Discover how predictive models influence real-world business scenarios

Translate business challenges into predictive modeling solutions

Develop experience with implementing theoretic models in Python

课程概况

In this course, you will learn three predictive modelling techniques – linear and logistic regression, and naive Bayes – and their applications in real-world scenarios.

The first half of the course focuses on linear regression. This technique allows you to model a continuous outcome variable using both continuous and categorical predictors. This technique enables you to predict product sales based on several customer variables.

In the second half of the course, you will learn about logistic regression, which is the counterpart of linear regression, when the response variable is categorical. You will also be introduced to naive Bayes; a very intuitive, probabilistic modeling technique.

课程大纲

Week 1: Simple Linear Regression
Week 2: Multiple Linear Regression
Week 3: Extensions and Applications
Week 4: Introduction to Naive Bayes
Week 5: Logistic Regression
Week 6: Estimation and Comparison

预备知识

You should be familiar with an undergraduate level, or have a background, in mathematics and statistics. Previous experience with a procedural programming language is beneficial (e.g. Python, C, Java, Visual Basic).

Learners pursuing the MicroMasters programme are strongly recommended to complete PA1.1x Introduction to Predictive Analytics using Python and PA1.2x Successfully Evaluating Predictive Modelling on the verified track prior to undertaking this course.

常见问题

What type of activities will I complete on the course?
This course foregrounds self-directed and active ways of learning: reading, coding in Python, knowledge check quizzes and peer discussion. In addition, the course features videos that demonstrate relevant predictive analysis techniques and concepts.
What software will I be required to use?
All coding activities on this course will be hosted on Vocareum. You will be able to access this free software directly within the edX platform. There is no requirement to purchase further software in order to complete this course.
What do I need to complete the course?
For successful completion of this course, you will need access to a computer or mobile device and a reliable internet connection.
What is the University of Edinburgh Accessibility Guidance?
The University of Edinburgh is committed to providing online information and services accessible to all. Edx provide an accessibility statement which is available via the footer of all edx.org pages and includes an 'Accessibility Feedback' form which allows Learners to register feedback directly with the edx. Courses created by the University of Edinburgh contain an Accessibility Statement which addresses equality of access to information and servicesandis available via the 'Support' page.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界