Warning: WP Redis: Connection refused in /www/wwwroot/cmooc.com/wp-content/plugins/powered-cache/includes/dropins/redis-object-cache.php on line 1433
随机过程:数据分析和计算机仿真 | MOOC中国 - 慕课改变你,你改变世界

随机过程:数据分析和计算机仿真

Stochastic Processes: Data Analysis and Computer Simulation

The course deals with how to simulate and analyze stochastic processes, in particular the dynamics of small particles diffusing in a fluid.

960 次查看
京都大学
edX
  • 完成时间大约为 6
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Basic Python programming

Basic theories of stochastic processes

Simulation methods for a Brownian particle

Application: analysis of financial data

课程概况

The motion of falling leaves or small particles diffusing in a fluid is highly stochastic in nature. Therefore, such motions must be modeled as stochastic processes, for which exact predictions are no longer possible. This is in stark contrast to the deterministic motion of planets and stars, which can be perfectly predicted using celestial mechanics.

This course is an introduction to stochastic processes through numerical simulations, with a focus on the proper data analysis needed to interpret the results. We will use the Jupyter (iPython) notebook as our programming environment. It is freely available for Windows, Mac, and Linux through the Anaconda Python Distribution.

The students will first learn the basic theories of stochastic processes. Then, they will use these theories to develop their own python codes to perform numerical simulations of small particles diffusing in a fluid. Finally, they will analyze the simulation data according to the theories presented at the beginning of course.

At the end of the course, we will analyze the dynamical data of more complicated systems, such as financial markets or meteorological data, using the basic theory of stochastic processes.

课程大纲

Week 1: Python programming for beginners
- Using Python, iPython, and Jupyter notebook
- Making graphs with matplotlib
- The Euler method for numerical integration
- Simulating a damped harmonic oscillator
Week 2: Distribution function and random number
- Stochastic variable and distribution functions
- Generating random numbers with Gaussian/binomial/Poisson distributions
- The central limiting theorem
- Random walk
Week 3: Brownian motion 1: basic theories
- Basic knowledge of Stochastic process
- Brownian motion and the Langevin equation
- The linear response theory and the Green-Kubo formula
Week 4: Brownian motion 2: computer simulation
- Random force in the Langevin equation
- Simple Python code to simulate Brownian motion
- Simulations with on-the-fly animation
Week 5: Brownian motion 3: data analyses
- Distribution and time correlation
- Mean square displacement and diffusion constant
- Interacting Brownian particles
Week 6: Stochastic processes in the real world
- Time variations and distributions of real world processes
- A Stochastic Dealer Model I
- A Stochastic Dealer Model II
- A Stochastic Dealer Model III

预备知识

Differential and integral calculus and Linear algebra at a 2nd year undergraduate level.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界