表面科学:表面分析方法

Surface Science: Methods of Surface Analysis

Discover contemporary surface analysis techniques and learn how to choose the right method for your research.

1048 次查看
俄罗斯国立核能研究大学
edX
  • 完成时间大约为 8
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

The information each method can and cannot give

Applications which are best for each method

Errors or uncertainties that might arise by using each method

Special features of each method

Sample preparation procedures required for each method

课程概况

There is a vast variety of contemporary surface analysis methods that you can use for your research. If you are not sure which one is right for you, or if you want to obtain the right information about different surface analysis techniques, then this course is for you!

This course describes the most widely used analysis methods in contemporary surface science. It presents the strengths and weaknesses of each method so that you can choose the one that provides you with the information you need. It also reviews what each method cannot give to you, as well as how to interpret the results obtained from each method.

This course is filled with examples to help you become familiar with the graphs and figures obtained from common surface analysis methods.

Each method is described in a similar way: basic principle, apparatus scheme, example results, special features, and actual device examples.

课程大纲

1. Introduction
• Introduction

2. Corpuscular diagnostics. Secondary–ion mass spectrometry. Rutherford backscattering
2.1. Secondary–ion mass spectrometry
• SIMS – Operating principles, plant layout
• SIMS – Analysis and interpretation of the results, examples
2.2. Rutherford backscattering
• RBS – Principles of operation, the circuit
• RBS – Analysis and interpretation of the results, examples
2.3. Analysis of elastically reflected recoil atoms (ERD)
• ERD – Principles of operation, the circuit
• ERD – Analysis and interpretation of the results, examples
2.4. The method of nuclear reactions (NRA)
• NRA – Principles of operation, the circuit
• NRA – Analysis and interpretation of the results, examples

3. Electronic diagnostics
3.1. Auger spectrometry
• Auger spectrometry – principles of operation, installation scheme
• Auger spectrometry – analysis of the results, examples
3.2. Energy– dispersion spectrometry
• Energy– Dispersion spectrometry – principles of operation, installation scheme
• Energy– Dispersion spectrometry – analysis of the results, examples
3.3. Translucent electron microscopy
• TEM – Principles of operation of the device and circuit
• TEM – Sample images and their interpretation
3.4. Scanning Electron Microscopy
• SEM – Principles and scheme of the device
• SEM – Sample images, their interpretation

4. X–ray diagnostics
4.1. The X–ray photo–electron spectroscopy (XPS)
• XPS – principles of operation of the device and circuit
• XPS – Examples of results, their interpretation

5. Probe microscopes
5.1. Tunneling microscope
• TCM – Working principles of the device circuit
• TCM – Sample images and their interpretation
5.2. The atomic force microscope
• ACM – Working principles of the device circuit
• ACM – Sample images, their interpretation

6. Conclusion
• Conclusion
• Summarizing, for a summary of the methods studied

预备知识

• Bachelor degree in Physics
• Vacuum system basics
• Particle surface interaction basics

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界