Warning: WP Redis: Connection refused in /www/wwwroot/cmooc.com/wp-content/plugins/powered-cache/includes/dropins/redis-object-cache.php on line 1433
用深度学习实现人工智能 | MOOC中国 - 慕课改变你,你改变世界

用深度学习实现人工智能

Applied AI with DeepLearning

1729 次查看
IBM
Coursera
  • 完成时间大约为 17 个小时
  • 高级
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

>>> By enrolling in this course you agree to the End User License Agreement as set out in the FAQ. Once enrolled you can access the license in the Resources area <<< This course, Applied Artificial Intelligence with DeepLearning, is part of the IBM Advanced Data Science Certificate which IBM is currently creating and gives you easy access to the invaluable insights into Deep Learning models used by experts in Natural Language Processing, Computer Vision, Time Series Analysis, and many other disciplines. We’ll learn about the fundamentals of Linear Algebra and Neural Networks. Then we introduce the most popular DeepLearning Frameworks like Keras, TensorFlow, PyTorch, DeepLearning4J and Apache SystemML. Keras and TensorFlow are making up the greatest portion of this course. We learn about Anomaly Detection, Time Series Forecasting, Image Recognition and Natural Language Processing by building up models using Keras on real-life examples from IoT (Internet of Things), Financial Marked Data, Literature or Image Databases. Finally, we learn how to scale those artificial brains using Kubernetes, Apache Spark and GPUs. IMPORTANT: THIS COURSE ALONE IS NOT SUFFICIENT TO OBTAIN THE "IBM Watson IoT Certified Data Scientist certificate". You need to take three other courses where two of them are currently built. The Specialization will be ready late spring, early summer 2018 Using these approaches, no matter what your skill levels in topics you would like to master, you can change your thinking and change your life. If you’re already an expert, this peep under the mental hood will give your ideas for turbocharging successful creation and deployment of DeepLearning models. If you’re struggling, you’ll see a structured treasure trove of practical techniques that walk you through what you need to do to get on track. If you’ve ever wanted to become better at anything, this course will help serve as your guide. Prerequisites: Some coding skills are necessary. Preferably python, but any other programming language will do fine. Also some basic understanding of math (linear algebra) is a plus, but we will cover that part in the first week as well. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging.

课程大纲

Introduction to deep learning

DeepLearning Frameworks

DeepLearning Applications

Scaling and Deployment

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界