机器学习的艺术和科学

Art and Science of Machine Learning

914 次查看
Google 云端平台
Coursera
  • 完成时间大约为 8 个小时
  • 中级
  • 英语, 法语, 葡萄牙语, 德语, 西班牙语, 日语, 其他
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Welcome to the art and science of machine learning. In this data science course you will learn the essential skills of ML intuition, good judgment and experimentation to finely tune and optimize your ML models for the best performance.

In this course you will learn the many knobs and levers involved in training a model. You will first manually adjust them to see their effects on model performance. Once familiar with the knobs and levers, otherwise known as hyperparameters, you will learn how to tune them in an automatic way using Cloud Machine Learning Engine on Google Cloud Platform.

课程大纲

Introduction

Course overview highlighting the key objectives and modules. First, you will learn about aspects of Machine Learning that require some intuition, good judgment and experimentation. We call it the Art of ML. You will learn the many knobs and levers involved in training a model. You will manually adjust them to see their effects on model performance.

The Art of ML

In this course you will learn about The Art of Machine Learning. We will review aspects of machine learning that require intuition, judgment and experimentation to find the right balance and what’s good enough (spoiler alert: it's never perfect!).

Hyperparameter Tuning

In this module you will learn how to differentiate between parameters and hyperparameters. Then we’ll discuss traditional grid search approach and learn how to think beyond it with smarter algorithms. Finally you’ll learn how Cloud ML engine makes it so convenient to automate hyperparameter tuning.

A pinch of science

In this module, we will start to introduce the science along with the art of machine learning. We’re first going to talk about how to perform regularization for sparsity so that we can have simpler, more concise models. Then we’re going to talk about logistic regression and learning how to determine performance.

The science of neural networks

In this module we will now be diving deep into the science, specifically with neural networks.

Embeddings

In this module, you will learn how to use embeddings to manage sparse data, to make machine learning models that use sparse data consume less memory and train faster. Embeddings are also a way to do dimensionality reduction, and in that way, make models simpler and more generalizable.

Custom Estimator

In this module we will go beyond using canned estimators by writing a custom estimator. By writing a custom estimator, you will be able to gain greater control over the model function itself.

Summary

Review the key concepts we covered in the Art and Science of ML course.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界