医疗保健数据模型

Healthcare Data Models

1737 次查看
加州大学戴维斯分校
Coursera
  • 完成时间大约为 10 个小时
  • 中级
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Career prospects are bright for those qualified to work in healthcare data analytics. Perhaps you work in data analytics, but are considering a move into healthcare where your work can improve people’s quality of life. If so, this course gives you a glimpse into why this work matters, what you’d be doing in this role, and what takes place on the Path to Value where data is gathered from patients at the point of care, moves into data warehouses to be prepared for analysis, then moves along the data pipeline to be transformed into valuable insights that can save lives, reduce costs, to improve healthcare and make it more accessible and affordable. Perhaps you work in healthcare but are considering a transition into a new role. If so, this course will help you see if this career path is one you want to pursue. You’ll get an overview of common data models and their uses. You’ll learn how various systems integrate data, how to ensure clear communication, measure and improve data quality. Data analytics in healthcare serves doctors, clinicians, patients, care providers, and those who carry out the business of improving health outcomes. This course of study will give you a clear picture of data analysis in today’s fast-changing healthcare field and the opportunities it holds for you.

课程大纲

Introduction to Healthcare Data Models

In this module, you will be able to define the foundational terms used in discussing and building healthcare data models. You'll be able to describe the conceptual model showing how data flows from operations to analysis. You will compare and contrast common data models used in healthcare data systems. You will also be able to identify common measures used in healthcare data analysis.

Data Models and Use Cases They Support

In this module, you'll be able to describe the Star Schema Data Model, distinguish it from the hierarchical and relational model, list some pros and cons and explain situations in which it could be appropriately used. You should also recognize when another type of data model might be better suited to a particular use case.

Working with Data across Systems

In this module, you'll be able to explain how information is stored in data models and how we assemble relevant information to analyze an interesting problem that can improve our healthcare systems. We'll review how we normalize data and how that facilitates analysis. We'll go on to discuss how to bring together information from different sources and across various functional systems. We will also consider how to measure it accurately.

Improving the Quality of Healthcare Data

In this module, you will be able to examine the data that goes into these models and explain how we work with the information that comes from the practice and business of medicine. We will transition from raising the data quality to focusing on finding and correcting data errors by validation and verification. You will also be able to describe several ways data is checked to eliminate errors and improve data quality.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界