Warning: WP Redis: Connection refused in /www/wwwroot/cmooc.com/wp-content/plugins/powered-cache/includes/dropins/redis-object-cache.php on line 1433
TensorFlow入门 – 葡萄牙语版 | MOOC中国 - 慕课改变你,你改变世界

TensorFlow入门 – 葡萄牙语版

Intro to TensorFlow em Português Brasileiro

1642 次查看
Google 云端平台
Coursera
  • 完成时间大约为 12 个小时
  • 中级
  • 葡萄牙语, 法语, 德语, 英语, 西班牙语, 日语, 其他
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Apresentaremos o TensorFlow de baixo nível e trabalharemos com os conceitos e APIs necessários para gravar modelos de aprendizado de máquina distribuídos. Levando em consideração os modelos do TensorFlow, explicaremos como fazer o escalonamento horizontal do treinamento desse modelo e oferecer previsões de alto desempenho com o Cloud Machine Learning Engine.

Objetivos do curso:
Criar modelos de aprendizado de máquina no TensorFlow
Usar as bibliotecas do TensorFlow para solucionar problemas numéricos
Resolver problemas e lidar com dificuldades comuns do código do TensorFlow
Usar o tf_estimator para criar, treinar e avaliar modelos de aprendizado de máquina
Treinar, implantar e produzir modelos de aprendizado de máquina em escala com o Cloud ML Engine

课程大纲

Introdução

A ferramenta que utilizaremos para criar programas de aprendizado de máquina é o TensorFlow, que será apresentado neste curso. No primeiro curso, você aprendeu a formular problemas corporativos como problemas de aprendizado de máquina. No segundo, viu como a máquina funciona na prática e como criar conjuntos de dados que podem ser usados no aprendizado de máquina. Agora que seus dados estão prontos, você pode começar a criar programas de aprendizado de máquina.

Principais componentes do TensorFlow

Apresentaremos os principais componentes do TensorFlow. Além disso, você aprenderá na prática a criar programas de aprendizado de máquina. Você poderá fazer a comparação e a gravação de avaliações preguiçosas (lazy evaluation) e programas imperativos, trabalhar com gráficos, sessões e variáveis e, por fim, depurar programas do TensorFlow.

Estimator API

Neste módulo, falaremos sobre a Estimator API.

Como ampliar os modelos do TensorFlow com CMLE

Agora, vamos aprender a treinar seu modelo do TensorFlow na infraestrutura gerenciada do GCP para treinamento e implantação de modelo de aprendizado de máquina.

Resumo

Veja o resumo dos tópicos do TensorFlow abordados até agora no curso. Relembraremos o que foi discutido sobre o código do TensorFlow e a Estimator API, além do escalonamento dos seus modelos com o Cloud Machine Learning Engine.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界