TensorFlow入门 – 德语版

Intro to TensorFlow auf Deutsch

1377 次查看
Google 云端平台
Coursera
  • 完成时间大约为 12 个小时
  • 中级
  • 德语, 法语, 葡萄牙语, 英语, 西班牙语, 日语, 其他
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Dies ist eine Einführung in die Grundlagen von TensorFlow. Darin werden die Konzepte und APIs erläutert, die Sie zum Schreiben verteilter Modelle für maschinelles Lernen benötigen. Außerdem wird anhand eines TensorFlow-Modells erklärt, wie Sie Modelle in großem Umfang trainieren und mit Cloud Machine Learning Engine effektive Vorhersagen treffen können.

Lernziele:
Modelle für maschinelles Lernen in TensorFlow erstellen
Diverse Herausforderungen mit TensorFlow-Bibliotheken lösen
Gängige Codefehler in TensorFlow beheben
Mit tf.estimator ein ML-Modell erstellen, trainieren und bewerten
ML-Modelle im großen Umfang mit Cloud ML Engine trainieren, bereitstellen und in der Produktion verwenden

课程大纲

Einführung

Zum Schreiben von Programmen für maschinelles Lernen verwenden wir TensorFlow. Dieser Kurs bietet daher eine Einführung in das Tool. Im ersten Kurs haben Sie erfahren, wie Sie geschäftliche Herausforderungen in Aufgaben für das maschinelle Lernen umformulieren. Sie haben gelernt, wie maschinelles Lernen in der Praxis funktioniert und wie Sie verwertbare Datasets erstellen. Nachdem Sie die benötigten Daten erfasst haben, können Sie mit dem Schreiben von ML-Programmen beginnen.

Kernkonzept von TensorFlow

Dies ist eine Einführung in die Hauptkomponenten von TensorFlow und Sie lernen in praktischen Übungen, wie Sie ein ML-Programm erstellen. Außerdem vergleichen und schreiben Sie Programme für verzögerte Bewertungen sowie erforderliche Programme, arbeiten mit Graphen, Sitzungen und Variablen und beheben schließlich Fehler in TensorFlow-Programmen.

Estimator API

In diesem Modul wird die Estimator API erläutert.

TensorFlow-Modelle mit CMLE skalieren

In diesem Modul erfahren Sie, wie Sie Ihr TensorFlow-Modell in der verwalteten Infrastruktur der GCP durch maschinelles Lernen trainieren und bereitstellen.

Zusammenfassung

Hier fassen wir die bisher in diesem Kurs behandelten TensorFlow-Themen zusammen. Wir gehen noch einmal auf den Kerncode von TensorFlow und die Estimator API ein. Den Abschluss bildet die Skalierung Ihrer Modelle für maschinelles Lernen mit Cloud Machine Learning Engine.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界