Warning: WP Redis: Connection refused in /www/wwwroot/cmooc.com/wp-content/plugins/powered-cache/includes/dropins/redis-object-cache.php on line 1433
走进机器学习 – 法语版 | MOOC中国 - 慕课改变你,你改变世界

走进机器学习 – 法语版

Launching into Machine Learning en Français

1314 次查看
Google 云端平台
Coursera
  • 完成时间大约为 10 个小时
  • 中级
  • 法语, 葡萄牙语, 德语, 英语, 西班牙语, 日语, 其他
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Après avoir présenté un historique du machine learning, nous étudierons pourquoi les réseaux de neurones sont aujourd’hui parfaitement adaptés à diverses problématiques. Nous apprendrons ensuite à définir un problème d’apprentissage supervisé et à trouver une solution adaptée à l’aide d’une descente de gradient. Ce processus implique la création d’ensembles de données permettant la généralisation. Nous examinerons comment procéder à cette opération de façon reproductible de sorte que l’expérimentation soit possible.

Objectifs du cours :
Déterminer pourquoi le deep learning est désormais si courant
Optimiser et évaluer des modèles en utilisant des fonctions de perte et des statistiques de performances
Corriger les problèmes courants liés au machine learning
Créer des ensembles de données de formation, d’évaluation et de test reproductibles et évolutifs

课程大纲

Introduction

Dans ce cours, nous vous enseignerons les connaissances fondamentales en matière de ML pour que vous puissiez comprendre la terminologie que nous utiliserons au cours de cette spécialisation. Grâce aux spécialistes du machine learning de Google, vous découvrirez également des astuces pratiques, ainsi que les écueils à éviter. À la fin du cours, vous disposerez du code et des connaissances nécessaires pour lancer vos propres modèles de ML.

Le machine learning en pratique

Dans ce module, nous vous présentons certains des principaux types de machine learning et aborderons son histoire, des débuts jusqu'à l'apogée. Vous pourrez ainsi rapidement vous familiariser avec le ML.

Optimisation

Dans ce module, nous vous guidons sur la voie qui vous permettra d'optimiser vos modèles de ML.

Généralisation et échantillonnage

Penchons-nous maintenant sur une question un peu particulière : dans quelles conditions est-il préférable de ne pas choisir le modèle ML le plus précis ? Comme nous en avons déjà parlé lors du module précédent sur l'optimisation, ce n'est pas parce que le modèle appliqué à un ensemble de données d'apprentissage présente un taux de perte égal à zéro qu'il sera performant pour de nouvelles données réelles.

Résumé

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界