Warning: WP Redis: Connection refused in /www/wwwroot/cmooc.com/wp-content/plugins/powered-cache/includes/dropins/redis-object-cache.php on line 1433
用于数据分析的数学和Python | MOOC中国 - 慕课改变你,你改变世界

用于数据分析的数学和Python

Математика и Python для анализа данных

1458 次查看
莫斯科物理科学与技术学院
Coursera
  • 完成时间大约为 28 个小时
  • 初级
  • 俄语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Анализ данных и машинное обучение существенно опираются на результаты из математического анализа, линейной алгебры, методов оптимизации, теории вероятностей. Без фундаментальных знаний по этим наукам невозможно понимать, как устроены методы анализа данных. Задача этого курса — сформировать такой фундамент. Мы обойдёмся без сложных формул и доказательств и сделаем упор на интерпретации и понимании смысла математических понятий и объектов.

Для успешного применения методов анализа данных нужно уметь программировать. Фактическим стандартом для этого в наши дни является язык Python. В данном курсе мы предлагаем познакомиться с его синтаксисом, а также научиться работать с его основными библиотеками, полезными для анализа данных, например, NumPy, SciPy, Matplotlib и Pandas.

Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3.

课程大纲

Введение

Добро пожаловать! На этой неделе мы начнём осваивать язык Python — один из главных инструментов специалиста в науке о данных, и вспомним кое-что о производных, которые активно используются при настройке моделей машинного обучения.

Библиотеки Python и линейная алгебра

На этой неделе мы познакомимся с Python-библиотеками, содержащими большое количество полезных инструментов: от быстрых операций с многомерными массивами до визуализации и реализации различных математических методов. Кроме того, мы освоим линейную алгебру — основной математический аппарат для работы с данными: в большинстве задач данные можно представить в виде векторов или матриц.

Оптимизация и матричные разложения

На этой неделе мы научимся с помощью методов оптимизации находить наилучшие значения параметров системы, чтобы минимизировать затраты или максимизировать точность предсказаний, а также познакомимся с матричными разложениями, которые используются при построении регрессионных моделей, для уменьшения размерности данных, в рекомендательных системах и в анализе текстов.

Случайность

На этой неделе мы освоим базовые концепции теории вероятностей и статистики, которые необходимы для понимания механизма работы практически всех методов анализа данных. Мы разберёмся с самыми популярными распределениями, узнаем, какие явления ими описываются и какими статистиками оцениваются их параметры, а также научимся строить доверительные интервалы.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界