数字信号处理 – 取样

1532 次查看
坎皮纳斯州立大学
Coursera
  • 完成时间大约为 15 个小时
  • 混合难度
  • 葡萄牙语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Nesse curso, você irá entender um ingrediente fundamental da revolução digital: a amostragem, que permite que sinais como músicas e imagens sejam armazenados e processados em dispositivos digitais.

课程大纲

Introdução

Nesse módulo, veremos uma introdução geral do curso. Descreveremos brevemente todos os problemas que serão estudados, motivaremos as soluções que serão apresentadas.

Senóides Contínuas

Neste módulo, faremos uma breve revisão de sinais senoidais a tempo contínuo. Veremos que todo sinal na prática podem ser escritos como uma combinação de sinais senoidais. A vantagem disso é que em muitos casos, como na amostragem, é muito fácil ver o que um sistema faz com uma senóide. Usando o fato de que tudo é uma combinação de senóides, fica então fácil ver o que o sistema faz com um sinal qualquer.

Senóides Discretas

Nesse módulo, veremos as senóides a tempo discreto. Como no caso contínuo, também podemos construir qualquer sinal prático como combinação de senóides. Mas as senóides discretas possuem alguma particularidades. Em particular, veremos que existe uma maior frequência possível para a senóide discreta, e que alguns sinais de diferentes frequências podem ser indistinguíveis. Esse fenômeno está intimamente ligado, por exemplo, ao fato de que a roda de um carro de fórmula 1 parece que está parada na transmissão da TV.

Amostragem

Nesse módulo, estudaremos em detalhe a amostragem, o processo que converte um sinal analógico em um sinal digital. Isso é o que é feito, por exemplo, em uma câmera digital e na gravação de um áudio em um smartphone. Veremos primeiramente o que ocorre quando o sinal amostrado é uma senóide. Com isso, poderemos modelar o aliasing, a principal distorção introduzida no processo. A partir desse modelo, poderemos especificar sistemas que diminuem o impacto dessa distorção.

Reconstrução

Nesse módulo, estudaremos a reconstrução, o processo que transforma um sinal digital em um sinal analógico. Veremos como podemos modelar esse processo e, a partir desse modelo, como podemos especificar filtros que minimizem as distorções resultantes.

Conclusão

Esse módulo traz um resumo de tudo o que foi visto no curso. Nesse apanhado geral, veremos a principal conclusão da amostragem, chamada de teorema de amostragem: se a taxa de amostragem e os filtros forem adequadamente escolhidos, é possível recuperar perfeitamente um sinal a partir de suas amostras.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界