序列、时间序列与预测

Sequences, Time Series and Prediction

1649 次查看
deeplearning.ai
Coursera
  • 完成时间大约为 8 个小时
  • 中级
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Solve time series and forecasting problems in TensorFlow

Prepare data for time series learning using best practices

Explore how RNNs and ConvNets can be used for predictions

Build a sunspot prediction model using real-world data

课程概况

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This Specialization will teach you best practices for using TensorFlow, a popular open-source framework for machine learning.

In this fourth course, you will learn how to build time series models in TensorFlow. You’ll first implement best practices to prepare time series data. You’ll also explore how RNNs and 1D ConvNets can be used for prediction. Finally, you’ll apply everything you’ve learned throughout the Specialization to build a sunspot prediction model using real-world data!

The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new deeplearning.ai TensorFlow Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization.

课程大纲

Sequences and Prediction

Hi Learners and welcome to this course on sequences and prediction! In this course we'll take a look at some of the unique considerations involved when handling sequential time series data -- where values change over time, like the temperature on a particular day, or the number of visitors to your web site. We'll discuss various methodologies for predicting future values in these time series, building on what you've learned in previous courses!

Deep Neural Networks for Time Series

Having explored time series and some of the common attributes of time series such as trend and seasonality, and then having used statistical methods for projection, let's now begin to teach neural networks to recognize and predict on time series!

Recurrent Neural Networks for Time Series

Recurrent Neural networks and Long Short Term Memory networks are really useful to classify and predict on sequential data. This week we'll explore using them with time series...

Real-world time series data

On top of DNNs and RNNs, let's also add convolutions, and then put it all together using a real-world data series -- one which measures sunspot activity over hundreds of years, and see if we can predict using it.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界