你将学到什么
Produce interactive data visualizations with Plotly Python
Use Plotly Python and Seaborn during EDA and feature engineering
课程概况
Welcome to this project-based course on Analyzing Box Office Data with Plotly and Python. In this course, you will be working with the The Movie Database (TMDB) Box Office Prediction data set. The motion picture industry is raking in more revenue than ever with its expansive growth the world over. Can we build models to accurately predict movie revenue? Could the results from these models be used to further increase revenue? We try to answer these questions by way of exploratory data analysis (EDA) and feature engineering. We will primarily use Plotly for data visualization. Plotly Python which is Plotly’s Python graphing library makes interactive, publication-quality graphs ready for both online and offline use.
This course runs on Coursera’s hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed.
Notes:
– You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want.
– This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
课程大纲
Project: Analyze Box Office Data with Plotly and Python
Welcome to this project-based course on Analyzing Worldwide Box Office Revenue with Plotly and Seaborn. In this project you will be working with the The Movie Database (TMDB) Box Office Prediction data set. The motion picture industry is raking in more revenue than ever with its expansive growth the world over. Can we build models to accurately predict movie revenue? Could the results from these models be used to further increase revenue? We try to answer these questions by way of exploratory data analysis (EDA) and feature engineering. We will primarily use Plotly for data visualization. Plotly Python which is Plotly's Python graphing library makes interactive, publication-quality graphs ready for both online and offline use.
课程项目
Analyze Movie Release Dates
Preprocess Features
Create Features Based on Release Date
Use Plotly to Visualize the Number of Films Per Year
Number of Films and Revenue Per Year
Do Release Days Impact Revenue?
Relationship between Runtime and Revenue